Overview of Module 5		

- What is one reason we need to count cells?

 <u>counting cells allows us to seed accurately, which ensures experimental</u>

 reproducibility and that our method of disease diagnosis is reliable
- What is the primary, manual method of cell counting used in research?

 hemocytometer grid counting!
- 3. Why do we use hemocytometers?
 - they're basically everything a researcher wants (fast, cheap, reusable, small, easy to use (and thereby easy to teach people how to use)
- 4. In flow cytometry, what does forward scattered light help measure? What does side scattered light help measure?
 - FSC helps measure cell size (as it correlates to cell volume

 SSC helps measure cell type (as it correlates to internal complexity
- 5. In FACS, how are different cell types sorted?
 - Fluorescence-tagged antibodies are added to the mixture and bind to their target cells. The fluorescent cells are then assigned a charge (positive or negative) that is picked up by the photodetector and used to sort the cells
- 6. Why is it important that a Coulter Counter contains electrolytic solution?
 - The electrolytic solution makes it so that cell movement changes electrical resistance (the factor measured by the coulter counter)
- 7. Why do we perform Viability Assays?
 - To quantify and visualize cells
- 8. What is the function of mitochondrial reductase in an MTT Assay?
 - Reduces yellow MTT to purple Formazan, which absorbs maximally at 570 nm
- 9. What is the function of luciferase in Cell Titer Glo?
 - Oxidizes Luciferin to Oxyluciferin, releasing light in the process
- 10. What is the function of esterase in Live-Dead Assay?
 - Convert non-polar Calcein-AM (which can move freely across the cell membrane)
 into polar Calcein (which is trapped inside of the living cell) to mark live cells

Cell Counting Techniques Vocabulary

1. Match the key term	to its role in o	ell counting or viability assays:
A. Calcein	<u>G</u>	Assay that uses bioluminescence to measure ATP
B. MTT Assay	<u>H</u>	One-step process that estimates metabolic activity through Formazan
C. Flow Cytometry	<u>J</u>	Two chamber cell counting system that measures changes in resistance
D. DMSO	<u> </u>	Measures cells by detecting scattered light
E. ImageJ	<u>B</u>	The first modern cell viability assay
F. Hemocytometer	<u>E</u>	Common image analysis software for cell counting
G. Cell Titer Glo	A	Marks live cells in Live/Dead Assay
H. MTS Assay		Marks dead cells in Live/Dead Assay
I. Ethidium Homodimer	<u>F</u>	Manual cell counting method that uses counting grids
J. Coulter Counter	D	Reagent that creates pores in the cell membrane

Using a Hemocytometer

- To ensure consistency in your hemocytometer count, you include cells on the <u>top</u> edge and <u>left</u> edge of your quadrant in your cell count, but don't include cells on the <u>bottom</u> edge and <u>right</u> edge of your quadrant in your cell count.
- 2. To obtain the average number of cells per counting square, you count the cells in each counting square and divide by __4__.
- 3. To obtain the cell concentration in # cells / mL, you take the average number of cells per counting square, divide by the volume of each counting square (_0.1_ mm³) and convert mm³ to mL.
- 4. Practice obtaining a hemocytometer count!

Cell Concentration:

$$\frac{cells}{mL} = \left(\underline{}_{square} \right) * \left(\frac{counting\ square}{0.1\ mm^3} \right) * \left(\frac{1\ mm^3}{10^{-3}cm^3} \right) * \left(\frac{1\ cm^3}{1\ mL} \right) = \underline{}_{7} \cdot 10^4 \underline{}_{mL}$$

Examining Cell Viability

5. Match the cell viability assay to the image below:

MTT/MTS, Live/Dead, Immunostaining, Cell Titer Glo

- (a) Picture A shows the results of a ___<u>Cell Titer Glo</u>___ assay.
- (b) Picture B shows the results of a <u>MTT/MTS</u> assay.
- (c) Picture C shows the microscopy images from a <u>Immunostaining</u> assay.
- (d) Picture D shows the microscopy images from a <u>Live/Dead</u> assay.